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ABSTRACT

The theoretical study of image contrast from small finite

dislocation loops in an i sotropic bcc crystal , reported i n Parts I and II

(Eyre et al 1977 a ,b), has been extended to include non—edge loops.

Computer image s imulation has aga in been used to study the influence of loop

norma l ,(&, Burger ’s vec tor , t~, diffraction vector,(’9) and image plane normal ,

on the distribution of black-white intensiti es in images from loops

l oca ted in Layer 1, i.e. within 0.25 of the surface, where,,~~)
is the

extinction distance for the diffracting vector(~j. As before, the choice and

range of parameters have been determined by the authors interest in

radiation damage in bcc molybdenum. The main conc l us ion from a survey of

non-edge perfect loop images is tha t modifications are predicted to the

images from edge loops on going to the non-edge confi guration , but that in

the majority of cases the scheme of image classification introduced for edge

loops based on ~~~ is still appropriate. Generally, the modifications to

• the edge images take the form of some skewing of the black-white lobes or

rotation of the black-white interface. In particular , it was found that ,

firstly, the images whe re 9.bI>l always retain their characteristic

• interface structure between the black and white lobes. Secondly, the

9.b. = 0 images from loops wi th b normal to z may be distorted signifi cantly

from the syninetrica l “butterfly” obtained from pure edge loops and , thirdly,

for some specific combinations of 9,,b,n and z diffi culty i s encountered In
di stinguishing between modified ~.b. = 0 and 0<

~a.b.1 <l images. Lastly, the

appl ica tion of these resul ts to the exper imental determination of b and n
is discussed.
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Figure 1 Stereographic projections illustrating the crystallograp hic

relationships between the possible Burgers vectors (b) , l oop

normal (r~1, ~~ and n3) adn the diffracting vectors (i) under

consideration in a B.C.C. crystal with (a) z ~0ll i and

(b) z = [0011. The symbol e specifies dislocation loops whose
images are shown in figures 2-7.

Figure 2 Dark field images at z = [0ll~ corresponding to various stages

in the formation of a perfect loop ~~~~~ = ~ [T1T] from faulted

loops b1 = ~ [OlT] and b1 
= ~~

- [Tb ]. The images (i)- (vii)

represent different combination s of b and n for each diffrac-

tion vector, 
~~
. The l oop norma l or its projection in the

image plane is marked on each image and the three directions

ofn are:

1. a1~ 
paralle l to the nucleation Burgers vector b1,

((i) and (iii ) or (ii) and (iv)).

• 2. !~2’ 
mid-way between and ~~ ((v) or (vi ))

3. 
~~~~~~ 

parallel to the perfect loop Burgers vector

~2’ 
(vii).

The scale marker corresponds to 10 nm and the computation

parameters are given in ~2.4. A similar system of notation

is used in Figures 3—7.

Fi gure 3 Dark field images at Z = [011 1 of various stages in the forma-

tion of a perfect loop ~~~ 
= ~ ~T1lifrom faulted loops ~l 

=

~
. [Oll]an d b = ~~.[’fl0].

Figure 4 Dark field images at z = [011] of various Stages in the forma-

tion of a perfect loop ~ = a~l00j from faulted l oops b1 =

~ [101 1 and = ~ ~1l0~.

L -lv -
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Figure 5A Dark field Images at Z [011] of various stage s in the forma-

tion of a perfect loop ~ atOlO] from faulted loops b 1
a a
2. COl T] and 

~l — [011].

Figure 58 Dark field images at z = [011] of various stages in the forum-

tion of a perfect loop ~~ - a[010) from faulted loops b1
[Tl0]and 

~l 
= 2 [1101.

Figure 6 Dark field ima ges at z — [0011 of vari ous stages in the forma-

tion of a perfect loop ~ [010) from faulted loops b1 
=

[011] and 
~l 

(110].

Figure 7 Dark field images at z [001] of various stages in the forma-

tion of a perfect loop ~~ [001] from faulted loops 
~l

[011] and 
~l [101].

FIgure 8 Dark field images at z = [011] showing the relation between

~~~
, L , b or and n or !.~ • In (a) b a 

~~
. [Till n =[Tll] and

700; (b) b ~~
. tTiij, n = [‘flO) and 9~ 

700; (c) b =

~ [111], n = [Tb ] and 9. = 2.1T; (d) b = ~ [Till, n [110]

and 
~ 

= 711; (e) b = ~~
. (liT], n = EDIT] and 

~ 
= O1T, and in

( f )  b = 
~~
. [T1T] , n = COlT] and a. = 71T. Scale marker corre-

sponds to 10 vim.

Figure 9 Dark field images showing the effect of increasing the product

of 
~~ 

and on type 2 (~g.b~ = 0) images from pure edge

loops. Scale marker corresponds to 10 nm.

Figure 10 Dark field images from loops havi ng ~ = a[010) in an edge

(n 3) and two non-edge (~~ and n1) configurations at z = [Obl)
with j 200 and 

~ 
= 211. The scale marker corresponds to 10 nm.

Figure 11 Dark field images from edge (~~) and non edge (~ 
and n 1)

loops having b~ ?~
. (Till and b2= ~~

. [llT]at z = [011] with

= 2lT and 9 = 200 respectively. The scale marker corresponds

to 10 nm.
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FIgure 12 Dark field images from edge 
~~3

) and non~~dge (n 1 and

loops having b2
a a[0lO] and ba’. 

[‘IlTi at z [011 ] with

a 21T. The scale marker corresponds to 10 nm.

Figure 13 Dark field Images from edge and non edge ~~
. ‘.l ll - loops at

z — [011] illustrating the relationship between the vectors

n and rn for the different coatinations of loop geometries

and diffraction vectors. In (a) ~~~ a 
~ [111] with: first

row, a [111], second row, — [0111, and In the third

row, n1 [110]. In (b) ~ [il l ] with : first row a

[ill] , second row, a [011] and In the third row,

[110). The scale marker corresponds to 10 nm.

Figure 14 Dark field Images from edge and non edge a IDO’ loops at

z a [011] illustratIng the relationships between the vectors

n and rn for the different coi~ lnation s of loop geometries

and diffraction vectors. In (a )  ~ 
a alOlO] and four loop

normals are considered: first column , 11
3 

[010], second

column , 
~l 

— tOill, third column , [011], and in the

fourth column , a (110). In (b) ~ a a[100]loop and two

different loop normals are considered: first column , a

a(100), end in the second column , fl~ [110]. The scale

marker corresponds to 10 nm.

FIgure 15 Dark field Images f rom edge and non edge loops with b 2- a[ 100 1

at z a [001) illustrating the relationships between the

vectors n and rn for the di fferent coitinatlons of loop

geometries and diffraction vectors. Three loop normals are

considered: top row, a (100), middle row, n
1 

• [100], and

In the bottom row • [1011. The scale marker corresponds

to 10 nm.
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1. Introduction

Small dislocation loops lying close to the top or bottom surface of a

thin foil exhibi t characteristic black—white (B-W) contrast when imaged under

strong two -beam diffraction conditions in the electron microscope. Much of

the early work on B-W images was based upon theoretically calculated intensity

profiles for pure edge loops, and it was suggested that the vector ! joining

the centre of the black lobe to that of the whi te was independent of the

imaging refle~tion ~ 
and parallel (within a few degrees) to the projection

of the Burgers vector b (e.g. Ruhle et al 1965, Ruhle 1967a,b and

Itlntyre, 1967). However, a fundamental limi tation of intensity profiles is

tha t they do not expose the two-dimensional syninetry which can be such an

important feature of B-W images. More recently, two approaches have been

developed for displayi ng two-dimensional computed images from both edge and

non-edge loops. The first involves calculating equi-intensity contour maps

which may then be compared directly wi th experimental mi crographs (Wilkens

and R~hle 1972, Ha~sserna nn et al 1972) , or with a two—dimensional densito-

meter trace obtained from these (Fell and Wi lkens, 1977). The second approach

is to obtain a photographic negati ve from a grid of computed i ntensities which

are displayed on a C.R.T. unit (~~her et al 1971 , Saldin and Whelan 1975).

Care must be taken to calibrate the optical density on the computed negati ve

with the response to electrons of the photographic emulsion used in the

microscope. In this way it has been shown that the t-analysis method of

determining b can break down for non-edge loops, and even for edge loops if

the angle between 
~ 

an d i s large (Eyre 1972 , W i lkens and R~h le 1972,

Eyre et al 1974). The quanti tative relation between !, 
~~
, b and the loop

normal n has recently been examined by Ohr (1976).

An important conclusion of the theoretical studies is that by observing

experimental B-W images using a number of operati ng reflections and compari ng
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these with the corresponding computed images , it should be possible to

determine b unambiguously, and to obtain an estimate of n (Ha~ssermann et al

1972 , Holmes et al 1976, Ohr 1976, English et al 1978). In recent studies by

Wilkens and co-workers at Stuttgart (Ha~sscrmann et al 1972, J~ger and Wi l kens 
—

1975), and at Harwell (English et al 1977, 1978, Jenkins et al 1978) consider-

able emphasis has been pl aced on analysing small dislocation l oops formed in

irradiated bcc metals since they are more complex ii terms of the possible

combinations of b and n compared wi th fcc metals. In two previous papers

• (Eyre et al 1977a,b, subsequently referred to as Parts I and II), computer

simulated B-W images of pure edge l oops in isotropic bcc and fcc materials

were presented and compared wi th experimental micrographs of i rradiated

molybdenum and copper crystals. It was shown that relating image syninetry

f rom edge loops located within the layer structure to I.9.bt and the angle

between b (n) and z where z Is the foil norma l , ena ble s a compa rati vel y

simple classification to be made of the many different possible images. In

this paper (Part III) we present computer simulated B-W images representing

all expected non-edge loops in a bcc material. As in Part I, the displacement H

field of a finite circular loop in an isotropic elastic medium is used ,

together with the two-beam dynamical electron diffraction equations . The

application of these resul ts to the analysis of a mi xed populati on of small

loops having different combinations of b and n is presented in a fourth paper

(English et al 1979) subsequently referred to as Part IV.

2. The Calculation of the Electron Intensities

2.1 The Solution of the Elec tron Di ffraction Equations

The theoretical Images presented in Part I were computed usi ng the

• progranine described by Bullough , Maher and Perri n (1971). This employed j
the two-beam dynamical electron diffraction equations wi th the column

approximation as given by Howie and Whelan (1961), in the form which

- 2 -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

requires the deri vative of the defect displacement field R in the
dR

direction of the electron beam —
~~~~~~. In the present work two other forms

of the di ffraction equations werr also tried in an attempt to reduce

the computational time: the alternati ve set of Howie-Whelan equations
dR

which require R rather then .~~~~~, and the Bloch wave equations which
dR uZ

employ 
~
j. In all three versions of the program the equations were

numerically integrated down the two-dimensional grid of colums with a

vari able step-length Kutta-Merson routine.
dR

Of the two Howie-Whelan versions, that employing 
~
j was fou nd to be

considerably faster in operation , mainly due to the time taken calcula-

ting sin and cos functions in the di ffraction equations section of the

R forma l i sm ( there was also some sav i ng of ti me in the di splacement

field calculation). However, both these forms require a large number

of Integration steps even in regions of crystal far from the loop. This

problem was overcome in the Bloch-wave program since the wave amplitudes,

unlike the beam amplitudes , do not vary in perfect crystal , and so very

large step lengths can be used far from the loop. Al though the electron

di ffraction part of the program is more complex, the time saved in
dR

calcula ting ~~ at fewer points in the integration outweighs this. This

advantage would presumably be even greater when cal culating images of

defects with more compl icated strain fields (e.g. loops in anisotropic

media). The majority of the images presented in this paper were corn-

puted wi th this version of the program.

2.2 The Displacement Field of a Finite Circular Loop

The di splacemen t f iel d in an i sotropi c med ium of a fin ite ci rcular

edge loop (Burgers vector b normal to the l oop plane) has been given by

Bullough and Newman (1960) and that of a shear loop (b in the loop plane)

by Ohr (1972). For a loop of mixed character these soluti ons may simply

_ _ _ _ _ _ _ _ _ _ _  -~~~~~~~~r~~—::: =.-~~~~-- -~~-~~~~ ---—- -— •



be added in proportion to the edge and shear components of the desired

b. It is important to adopt a sign convention for b and the 1oo~ normal

n. The line direction of the disboc~tion loop is defi ned as positive

in a right-handed screw sense wi th respect to n. Then b can be

assigned using the FS/~ I conven tion. If this is done , ~b .n l  > 0 for a

loop wi th a vacancy edge component. The displacement field itself , and

the manner in which it was formulated for use in the image program is

given in the Appendix.

2 ,3 Loop Geometr ies

It is expected that loops in bcc metals will nucleate on t l ] 0}

planes as faulted loops wi th b = <110> and then shear to perfec t
l oops with b = <111> or b = a<100> (Eyre and Bullough 1965); the

loop normals are either in the original <110> di rection or some

direction intermediate between this and the Burgers vector b. The

experi mentally useful diffracting vectors for obtaining dynamical images
from such loops are of the type <110>, <200> and <211> and these

reflections can be obtained at foi l orientati ons close to z = [oil’ and
z = ~0l] . The simulated images from edge loops wi th such diffracting

vectors i n an Coil] foil have been reported in Parts I and II. In “is
paper we present images for ~~

. <110> , <11 1> and a <100> loops lying on

thei r pos sible { 1lO} nucleation planes together wi th the perfect loops
rotated halfway and fully to their pure edge configurations imaged wi th

the same three di ffracting vectors in a z = L~1l] foil and wi th <110>

and <200> reflections in a z = [OOfl foil. The procedure adopted to
i denti fy these different loop geometries throughout the remainder of

this paper is as follows :-

- 4 -
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( I )  Edge .~~. <110> loops lying on their nucleation plane are

des igna ted !! l ’ �.l’

(ii) ~ <ill> or a<lOO> loops lying on thefr {1lO} nucleation

pl ane are designa ted n 1, k2.
(iii ) These same perfect loops rotated halfway to a perfect edge

con figura tion are des igna ted 
~2’ ~~

(iv) These same perfect loops fully rotated to an edge configuration

are designa ted 
~~~~~~

Stereograms representIng the two foi l orientations together wi th

the operating reflections, 2’ and the possible loop geometries

identifi ed according to the above scheme are presented in figures la

and b. In the survey figures (2—7) only geometrically distinct

combinations of b,n and 2 are given ; images corresponding to all other

combinations can be obtai ned by simple rotations and/or by mi rror

F reflecti ons . Wi th one excepti on, because of geometric equi valence , only

two of the possible nucleation planes are required, e.g. for loops

sheari ng to = .
~~ ‘ [lii] there are three possible nucleation planes,

111 = (Tb ), c~Oi) or (011), but at z = Lblfl the first two are geo-

metrically equivalent. The one exception is the i ncl ined = a 131l0j

loop in the z = [0113 foil (see figure la) for which three of the (110)

nucleation planes are geometrically different. In this case only,

images are presented for all four possible nucleation planes (see

figures 5A and 5B). Some of the geometrically equivalent images are

I included in figures (8-15) and the actual loop geometries presented in

the survey figures are denoted by circles in figures la and lb.

2.4 Image Contrast Calculations

Bright and dark field intensities were obtained for both edge and

• non-edge dislocati on loops 0f radius r located at a distance d from the

— 5 —
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electron exit surface of a bcc crystal of thickness t. The contrast

parameters used in the present calculations are the same as those used

i n pre v ious wor k (Bu ll ou g h , Maher and Perrin 1971, Part I) and are

given in Table 1. The extinction distances are the two-beam , 0°K

values reported by Howie and Basinsk i (1968) for molybdenum and the

anomalous absorPtiond istances ç were taken from the curve of two-beam,

300°K va lues published by Humphreys and Hirsch ( 1968) for atomic number

41. The mean absorption distance was taken equa l to 4 E~~~~~~~; this

assignment is not too critical since it only affects the scale of the

intensities .

Compared to the pure edge loops considered in Part 1, i t  i s

necessary to include many more combinations of b and n in order to

adequately represent the range of images to be expected from non-edge

1oops. Moreover, in Part I, images were only presented for ~ <110> and

<111> loops at z = [Oil], whereas in this paper images are also

presented for edge and non-edge a <100> l oops at z = [001] as wel l as

z = [011]. In order to restrict the number of images calculations

were carried out for only one set of parameters:- loop radius

r = 0.1 
~llO’ 

crystal thickness t = 5.25 
~1l0’ ioop position

d = 0.15 and Bragg deviation parameter ü g = 0. Thus, all calcula-

tions are for loops located at the centre of layer 1 (L1 ) in the l ayer

structure ( Ruhle 1967a) . It was shown in Part I that loop location

wi thin the layer structure , i.e. whether it is located within L1, 12
or L3, foil thickness , loop size and small changes in t~9 do not

fundamentally affect image symmetry for edge loops and we expect the

same generalisation to hold for non-edge loops.

• 
‘ - 6 -
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3. Results

3.1 General description of the Images

Dark field images from loops whose geometries are defined by the

encircled points on the stereograms in figures be and lb are presented in

figures 2-7. The values of Ij .bl for the loops consIdered in these

figures are listed for the two foi l normals ~sed In Table 2. The Images

for pure edge loops are presented in the top and bottom rows of

Figures (2-7) ; the bottom row gives the Images of a perfect loop

• c 111-~ or a ‘100>) imaged at z • ~Oll ” or <001-’, while the top

row shows the <110> from which they may form . The approach adopted in

Parts I and II towards these images was to classify their two dimensiona l

Image syninetry In terms of ..bI and the angular relation between b and z;

in this way the images were classified Into four basic types and these

are suninarized In Table 3. Examples of image types 2, 3 and 4 for an

• ~L~
1
~J edge loop a t z  [Oil] and an a[blOJ loop at z ~OlJ are

represented by the Images vii In figures 2 and 6 respectIvely, w h i l e

type 1 Images are seen in the images (I) in figure 3. The present

results have confirmed that the images from a ‘100 - edge loops at z

[oo~J, not considered in Parts I and II, can also be classified Into the

four basic types. The Images presented In the middle two rows (Images

(iii ), (v), (Iv) and (vi)) In figures 2-7 show the extent to which the

four types of images from edge loop are modified on going to non-edge

loops. In the remainder of this section we highlight the main features

of these modifications and In order to do this I t Is conven ient to brea k

down the many combinations of loop geometries and foil plane normals

Into 5 basic groups as fo llows :-

(I) b and n normal t o z  edge and non-edge loops

( I I )  900 3 (b z)  or 3 (n , z )  00 non-edge loops only

i.e. b or n inclined to the image plane.

—
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( I I I )  900 >[3 (b, z) and $ (n ,z)] > 0° edge and non-edge loops.

i.e. b and n Inclined to the image plane.

(IV ) b or n parallel to z 
- 

non-edge loops only

(V) b and n parallel to z edge loops only

Case (I) .
~~ 

and p normal to .L
The present results have confirmed that all edge loops (perfect and

faulted satisfying this condition exhibit types 2, 3 or 4 images (see

images listed in Table 4a). Rotation of n out of the b-z plane while

retaining n norma l to z modifies all three image types. The most

significant modification is to the type 2 ‘butterfly ’ image (see the

images identified under .a•.~ 
= 0 in Table 4b). It can be seen that the

‘butterfly ’ symmetry is severely distorted , with one pair of the white

and black lobes being enhanced at the expense of the other giving the

image an appearance more like a skewe& type 3 B-W image. Examples of

edge loop ‘butterby ’ images and non-edge loop distorted ‘butterfly ’

images can be compared in figure 2(a) vt i and Iii and figure 6(a) vii & iv.

With regard to 0 <Ig.b )~ 
1 images , going to non-edge configura-

tions results in a skewing of the B-W lobes and some modification in

their interface, but there is no basic change in the type 3 symmetry

of the image (see images listed in Tables 4a and b). Of particular

interest are the images from non-edge loops for which 
~~~~~~ 

= 0 (see

figure 2(c)iii and figure 6(b)lv); they are both severely skewed and

there is some distortion of the black and white lobes. These types of

images are discussed In more detail in section 3.3.

The basic form of the Ij.~i> 1 image is not changed significantly

on going from edge to non-edge loop geometries (see images listed in

Tables 4a and b). The interface structure characteristic of a type 4

image is retained but there is some skewing of the B-W l obes towards n.



Case (II) 90° >[~(k,.i) or ~ 
(.n.z~l >00 I.e. ~ or~~ inclined to the

Image plane

All loops satisfying this condition are non-edge and the figures

showing the simulated images f rom such loops are listed In Table 5.

Considering first 2.k a 0 images, If n is rotated out of the image

plane with respect to b but remains In the b-z plane, or b Is rotated

out of the image plane with respect to n but remains In the n-z plane , H

then the type 2 ‘butterfly’ image symmetry is retained (see figures

5A(c) ii l , 6(a)iii and v. In all other cases where n or b Is rotated out

of the image plane and out of the b-z or n-z plane a distorted type 2

‘butterfly’ image is obtained. As in case (I) distortion of non-edge

0 images is a consequence of an enhancement of the intensity of

one pair of black-white lobes at the expense of the second pair (see

figures 2(a)iv and vi , 4(b) i il , v, iv and vi). It should be noted that

the enhancement effect appears to be greater for b = a <l0O>~~= <11 0>,

where ~ (n ,b) 450, so that the ‘but terfly ’ synmietry is almost

completely lost and the Images appear more like type 3 (see figures

4(b)iii and iv).

With regard to the Images corresponding to 0 < ~..bf’(l and Ig. b l> 1
-

• 
the con~.rast from non-edge loops Is basically the same as that predicted

for edge loops, apart from some skewing of the image along n if It is

rotated out of the b-z plane (see images listed in Table 5). There should

be no difficulty in the identification of such images ~ types 3 or 4.
• Case (111)900 >f t  ~~~~ and (a,zfl>O°i.e. ~ and n inc l ined to the image

p]!ne

In this category both b and Ii are rotated out of the image plane and

edge and non-edge loop geometries are possible. The list of figures show-

ing images from such loops are given in Tables 6a and b and it can be

seen that a comparatively large number of combinations must be considered.

- 9 -
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Considering first the contrast corresponding to j.b 0, all of the

edge loops satisfy the conditions specified in Part for obtaining type 1

contrast and the present results confirm that this contrast is obtai ned for

‘110 loops at z = cOolj as well as for <l10>~ ~~1ll> and a<lO0~
loops at z a [01)]. The Images from non-edge loops also exhibit type 1

contrast provided $ (b,z) and 3 (n ,z) . 45°. However, significant devia-

tion from this contrast is observed when 3 (n,z) > 45°. For example in

figure 5A(c)v when n lies in the b-z plane and ~ (~,z) = 67.5°, a ‘butterfly ’

image is obtained. In the case where n is rotated out of the (b-z) plane

and ~~ (n ,z) = 60° or 52° distorted images with enhanced black and white

lobes and an L shaped interface are obta ined (see figures 5B(c) iii , iv , v

and vi). The possible confusion of such images wi th modified type 3 images

corresponding to 0 ~(g.b~ 1 is discussed in section 3.3.

The present results also confirm that all of the edge loops for which

0 
~~~~~ 

1 is satisfied exhibit type 3 contrast (see the figures listed in

Table 6a). Particular attention is drawn to the edge ~<ll0> loops at z =

[001] imaged wi th ~ = <110> so that ~~~~ ~ (see figures 6(b)i and (c)i

and 7(b)i and ii and (c)i and ii). As In the case of similar images from

<11 0> loops at z = Ibi ’fl the images are truncated and the B-W interface
shows even more severe cusping , e.g. compare figures 2 (b)ii and 7(b)I.

This again reflects the angle n and b make wi th respect to z, being 60° in

the former case and 450 in the l atter. An important feature of such images

is that the sense of cusping reverses on reversing the sign of ~.b (compare

figures 7(b)I and ii) and provided ± ~ pairs of images are obtained there
should be no difficulty in Identifying them as type 3. On going to non-edge

loop geometries (see Table 6b for list of figures ) type 3 contrast is

obtained provided £ l ies along or ~~~~~~. Of particular importance are the

Images obtained when ~~~~~~, 

~
, and £ are all rotated with respect to each other.

Cons ider fi rst the case when ~ and are rotated in the opposite sense wi th
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respect to The present results show that if and j are rotated 35°

either side of and 3 (n,b) = 35~ basically type 3 contrast is obtained

(figure 3(d)iv). However, on increasing the angle so that $ ~~~~ 
= 55°,

3 (j~~~) = 550 and $ (n ,b ) = 45°, the B-W contrast deviates quite

significantly from that corresponding to type 3 contrast. The B-W inter-

face takes a zig-zag for~ and the black and white lobes split into two

either side of the Interface (figures 5B(a)iii and (d) lv). We shall

return to consider the possible confusion between such images and

distorted butterfly images corresponding to j.b = 0 in a later section.

It is interesting to note that as the loops rotate towards the edge

configuration so that 3 (
~~~~

) and 3 (n ,b) are reduced to ‘~~ 27~~ and

22~° respectively the zig-zag interface and split lobe are virtually lost

and the image reverts to type 3 contrast (figures 5B(a)v and (d)vi).

The second case to consider is when ~ and are rotated in the same

sense with respect to ~~~~~ . The B-W interface then takes a wavy fom but

the black and white lobes are not spl it and the image retains basically

type 3 contrast (figures 5B(a)Iv and (d)iii).

With regard to images corresponding to 2.bl> 1 only edge loops

satisfy the conditions specified for case (III). Figures showing images

from such loops are listed in Table 6a and as expected, they all exhibit

type 4 contrast.

• Case CIVI: ~~ . or 
~~~ 

parallel to ~:

All loops satisfying this condition are non-edge and the figures show-

Ing the corresponding simulated Images are listed in Table 7. It should

be noted that for b parallel to z, j.b = 0 for all diffracting vectors,

while if n is parallel to z, then Ia .bl = 1 for the diffraction vectors

considered.

Considering first the 2.b = 0 images, as expected they all exhibit

• type 1 contrast and will probably not be visible experImentally. The

l l  —
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images from loops satisfying (j.b( = 1 exhibit type 3 contrast, but the

B-W interface rotates so that It  is always perpendicular to ~ and some

care may be needed in distinguishing such images from ~.b = 0 type 1

images discussed above, particularly when higher order reflections are

used, e.g. <211> (see figures 3(c)iii and (d)iii). We consider this

aspect further in section 3.2.

Case(V):b and n  parallel to~~ L
All loops satisfying this condition are edge-loops and ~.b = 0 for all

reflections. The figures showing simulated images from such loops

are listed in Table 8, and as reported in Part I they -all exhibit type 1

contrast. As mentioned in the preceding paragraph, the level of contrast

obtained increases as the order of reflection increases so that the images

for ~ = <211> exhibit clear black-white lobes and they may be mi staken

for type 3 images.

~ Ana l~sis

Before concluding the discussion of image classification mention

should be made of the traditional £ analysis method for determining b, where

t is a vector joining the centres of black and white lobes of images

corresponding to (1.b( > 0 (Rühle et al 1965, Rü hle l967a,b, Mc Int yre

1967). Earlier studies (Wilkens & ROhie 1972, Ha~ssermann et al 1972,

Eyre 1972 , Eyre et al 1974, Eyre et al 1977a (part I)) have predicted that

the simple ! analysis breaks down for edge loops and ioops having an

appreciable non-edge component in elastically isotropic materials.

Simulated B-W images from edge and non-edge loops showing the position of

£ for various combinations of 
~~~
, b and n are presented in figure 8. These

results demonstrate that the conditions for 2. to be parallel to b or

are even more restrictive for non-edge loops than for edge loops and also

that L is not uniquely related to n. The results also agree with the

more detailed analysis by Ohr (1976) predicting the angular relationships

- 12 -
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between j, b (or ~,
) , n (or ~~

) and Q. for non-edge loops .

3.2 Influence of 
~
j x on Image Strength

There is a general tendency for image strength to increase as the

product of 
~
j and )b ~increases. This is most noticeable for the

Images obtained when 9.b a 0 and an example is presented in figure 9 which

shows a series of images exhibiting type 2 contrast from edge ~<1l0> ,

and a zl OO>loops imaged wi th <110< , <200> and <211> ~~s.

Further examples for j.b a o images exhibiting type 1 contrast and for
a 1 Images exhibIting type 3 cohtrast can be seen In figures

3(a)-(d) I and 5A(a)-(d) Ii and Iv. It is emphasised that j.b) >1

Images exhibiting type 4 contrast are only obtained for higher order

reflect ions , i.e. <200> and <211> and thus, there is not a noticeable

effect of 12.1 x Ib i on image strength. The important practical

consequence of the I~J 
x I.~I effect is the possible difficulty in

distinguishing between strong type 1 contrast and weak type 3 contrast

e.g. compare Images ii & iv in figures 5A(a) & (c). However, as already

emphasised in Parts- I and 11 it Is essential to achieve a match between

theory and experIment for a number of i’
~ 

and values of (.a.b( before b

and n can be assigned unambiguously to a given 1oop. The general con-

clusion to be drawn Is that the )~ ) x Ibi effect on Image strength should

not give rise to any practical difficulties in the analysis of loop

geometries.

3.3 Problems In Im~ge Identification for Non-E4ge (.oops

It was pointed out in Section 3.1 that images corresponding to .a..~
a o and 0 <~g.bj t1 can be modified very considerably on going from edge

to non-edge loop geometries. It is important therefore to consider the

difficulties that may arise due to these modIfications In distinguishing

between the different types of image. The possible confusion arising

between type 1 and type 3 Images from loops wi th b or n parallel to z

- 13
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because of the dependence of image strength on )gj ~ ) b) has already

been discussed in section 3.2. -

There are three additional cases to consider. The first is a further

example related to the modification 9f type I contrast corresponding to r
= 0 for inclined edge loops. An example of the change in contrast on

going to non-edge loop geometries is shown by the top row of images in

fIgure 10. As n rotates away from b and out of the b-z plane strong black

and white lobes develop with some spl itting of the white lobe so tha t the

B-W interface develops an I shape when 5 (n,b) = 45° and 3 ~~~~ 550•

The second set of images in the bottom row of figure 10 are for loops

having the same geometries but imaged wi th ~ = [2111 so that )2..bI = 1. In

this case the B-W interface again becomes L shaped as n rotates away from

b and there is a close similarity between the form of the j.b = 0 and 12.bI
= 1 images when the loop lies on its {llO} nucleation plane (compare the

images in column (c) of figure 10).

The second case to consider is the modification in type 2 contrast

corresponding to 2.b = 0 for edge loops with b normal to z. An example is

shown by the top row of images in f igure 11 wh ich are for an ~ [IliJ loop .

As n Is rotated away from b about z the intensity distribution in the three

pairs of black and white lobes is considerably modified so that the images

from the non-edge loops appear more like a distorted type 3 image. The

interface between the most prominent bl ack and wh ite lobes initially becomes

straight for $ (n,b) = 17~° (figure lib) and then develops a zig—zag as n

rc.tates further to 3 (n,b) = 35~ (figure llc). The second set of images

In the bottom row of figure 11 is for three equtvalent loop geometries but

Imaged with ~ = 200 so that I.9..bI = 1. The greatest similarity in this case

exists between the top image in column (b) with the bottom image in column

(c) which is a heavily skewed type 3 contrast corresponding to 2•~ 
= 0.

The third case to consider Is the modification in type 3 contrast

l4L_ __ 
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corresponding to 2..bI a 1 for edge loops. An example Is shown by the top

row of Images In figure 12 which Is for an Inclined b a a (3)ldl loop. As ~

is rotated away from b and out of the b-z plane there is a splitting of

the black and white lobes and the B-W interface takes on a markedly zig-zag —

form. The bottom row of Images In figure 12 Is the same as the top row of

figure 11 and there is clearly a close similari ty between the two images

in column (c) in figure 12 correspondIng to ~.b) 1 and 0 respectIvely

It is clear therefore that considerable care must be exercised in

distinguishing between images corresponding to 2.b 0 and to 0 < f~.b)’~< 1

from non-edge loops. However, three general points should be emphasised.

(a) The above three cases where confusion can arise are when

and are rotated wi th respect to each other by comparatively large angles.

The present work has shown that in all other cases considered there Is little

difficulty In distinguishing between distorted type 2 and type 3 images

corresponding to 9.b. a o and Ig.bI  
a 

~ 
or 1 for non-edge loops.

(b) No examples were found of images exhibiting type 4 contrast from

loops wi thin the layer structure being sufficiently modifIed so that they

could be confused with images corresponding to )g.b) ~ l. In all cases the

characteristic B-W interface structure is retained and as will be shown in

Part IV , this should always provide a firm basis for their positive

Identification .

(c) The results presented in this section together with coninent (b)

serve to emphasise the necessity of obtaining images in several reflections

from a given loop to arrive at an unambiguous assignment of b and n.

3.4 Determi natIon of loop Normal.

As well as determining b it is clearly important to evaluate n In

order to define the geometry of non-edge loops. The images presented in

figure 8 have already shown that the Q. vector is not uniquely related to n.

In exploring alternative approaches to estimating n we have examined two 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
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features related to the change in image synlnetry on going to non-edge loop

geometries. First is the distortion of the type 2 °butterfly” images,

giving them a strongly skewed appearance, when n is rotated out of the b-z

plane. This distortion occurs irrespective of whether or not n lies in the

image plane (figures 2(a) lii - vi , 4( b ) I I I  - v i , 6(a) iv and vi). A

striking feature of all these images is that the direction of skewing tends

to lie along n (or its projection in the image plane, ~~ 
It is clear

that on rotating n from one side of b to the other the strong black and

white lobes switch sides with respect to the line of syninetry along ~ e.g.

see images iii and iv in figures 2(a) and 4(b). Thus, if sets of possible

n’s for non-edge loops are rotated out of the b-z plane an d the ~~‘s are

rotated with respect to each other they may be reliably distinguished from

the direction of skewing of the distorted type 2 images. However, when

is parallel to b the type 2 image undergoes minimal change in symetry

making it virtually impossible to even distinguish between edge and non-

edge loops (figures 6(a) iii , v, and vii).

The second feature we have investigated is the angular relationship

between rn and n (or n~
)
~ where rn defines the normal to the B-W interface in

type 3 and type 4 images. In the case of type 4 images rn is drawn normal

to the axis of the ellipse delineating the interface structure. The results

for loops having b = <111> and a <100> at z = I3~ll] and b = a <100> at

z = [001J are shownin figures 13, 14 and 15 respectively.

Considering first figure 13, the set of images included in (a) are

for loops having b = ~ r Dli] normal to z. The top row of images are for

edge loops, the middle row for non-edge loops with n remaining normal to

z, but rotated out of the b-z plane by —35°, i.e. n = [ol~J and the bottom

row are for a second non-edge loop geometry wi th n inclined to z by 600 and

rotated out of the b-z plane by ~20~ i.e. n = i’llOJ The striking feature

16



of these results is that rn Is i ndependent of 
~ 

and always coincides with n.

when both b and n lie in the image plane. Even when n is inclined to the

image plane rn is influenced slightly by 
~ 

but always l ies close to ~~~~~ .

However , a rather different picture emerges from the set of images in

figure 13(b) which are from loops having b = .
~~ [lllj inclined by 35° to z.

Aga in, the top row of Images correspond to the loop in its edge configura-

tion and in is only parallel to when 
~~~
, ~, and are all  coinc ident, but

for the two <211> ~‘s, rotated out of the b-z plane , rn is rota ted

towards 
~~
. The second row of images correspond to non-edge loops wi th

n = £011] parallel to z and in this case rn is always parallel to 
~~~
. The

third row of Images correspond to the loop In a second non-edge configura-

tion wi th n Dlc~j  inclined to z by 60~ and rotated out of the b-z plane

by ,~,350• Again rn is influenced by 
~ 

although for ~ = £200] and [2lVJ in lies

close to

Going on to the second example illustrated in figure 14 the images are

from both inclined and edge-on (with respect to the image plane ) a<lOO>

loops and a similar picture emerges as in the preceding example. The set

of images inc luded in figure l4(a) are for loops hav ing  b = a [010] inclined

by 450 to z in an edge configuration (first column) and lying on one of the

poss ib le {110) nuclea tion planes (secon d , third and fourth columns).

Considering first the images from the edge loops (first column) , rn l ies

along for 
~~ . 

= 011 when 
~ 

and are coincident and is rotated to-

wards 
~ 
for the two <211> js. The images from the loop in a non-edge

configuration with n = [bliJ (second column in figure 14(a)) is an interesting

case since n is both normal to z and lies in the b-z plane. In this case rn

is virtual ly Independent of j and lies close to n, although the black and

white lobes are skewed markedly towards 
~~~
. When n is parallel to z i.e.

n = [013] (third column of images in figure l4(a))m is again always close

to 
~~

. The fourth column of images in figure 14(a) is from a loop with n =

— 17 —
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Dlo] inclined 60° to z and rotated out of the b-z plane by — 55°. For 
~

= oiL in is rotated strongly towards but for the other two g ’s the j
Interface is zig—zag or wavy and it is not realistic to define an in

I-
vector. With regard to the l oops having b = a floOJ normal to z, figur~
14(b) shows thattype 4 images are obta i ned for the ~‘s used (9.b 0 for

= OJT). For the edge loop configuration rn is always coincident with

n and independent of 
~ 

as expected. For the non-edge configuration wi th

= D10] inclined to z by 60° and rotated out of the b-z plane by ~~~
(second column of images) in Is rotated slightly towards ~ but always lies

close to ~,.

The third example shown in figure 15 is for a loop having b = a [100]

normal to z = ~ 0lJ in the edge and two non-edge configurations . The top

row of images correspond to the ioop in its edge configuration and , as
expected, rn is i ndependent of 

~ 
and always coincides with n. The middle

row of images corresponds to the loop in a non-edge configuration wi th n

= [1l0~ both normal to z and rotated out of the b-z plane by 45° and rn

again always coincides with n. The bottom row of images corresponds to the

loop in a second non-edge configuration wi th n = [ioi] inclined 45° to z

but lying in the b-z plane and in this case in is influenced slightly by 
~

but a lways l ies close to

The theoretical results predict therefore that the rn vector for 9.b

� 0 images frequently gives a good estimate of n or ~~~~~. More specifically,

when b an d n l ie norma l to z , in gives a precise determination of n. Even
for inclined loops when b or n are inclined by > 45° to z, rn gives a
reasonably close estimate of 

~~~~~~ 

so that it is often possible to clea rly

distinguish between perfect loops lying on different {l1O ] nucleation

planes. Only when n lies parallel or close te z, is in not related to n,

but even then the rotation of rn with ~ gives a good indication that the n

is close to z. We therefore conclude that rn vector analysis for B-W images

_

~
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is a usefu1 approach to determining n for small dislocation loops and in

Part IV we present some experimenta l examples illustrating its use for the

analysis of loops in i rradiated molybdenum.

4. Genera l Discussion and Conclusions

The primary objective of carrying out the image calculations reported in

this paper has been to provide a method for analysing experimenta l images

from small dislocation loops in bcc metals. These are generally more complex

than in fcc metals because of the early unfaulting of <110> faulted loops

to one of two Burgers vectors resulting in many possible combinations of

b and n. We present examples of how the present results can be applied to the

analysis of small loops in i rradiated bcc metals in Part IV. However, before

doing this we point to some of the limitations of the present calculations and

sumarise the main conclusions on the approach to be adopted in matching

theoretica l and experimenta l images .

Considering first the limi tations , the present calculations ,like those in

Part I, are restricted to dislocation l oops in an elastically isotropic cubic

metal . While this is a good approximation for metals such as W , Al , and Mo

there are others such as c*-Fe and Cu which exhibit comparatively high

anisotropy , and so care must be taken when applying the results to these

metals. Nevertheless , it was found in Part II that the theoretically

simulated images closely match experimental images from loops in both Mo and

Cu indicating that~ in the latter case , elastic anisotropy does not appear to

have a significant effect on the image contrast.

The present work has also not considered how image contrast varies with

loop position , particularly as the loop goes through a transition zone

between layers. This was investigated In Part I and the important aspect

exposed was that the simple B-W type 3 images corresponding to 0 <)9.bl ~< 1

can develop an interface structure if the loop is in a transition zone and

19
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they could therefore be difficult to distinguish from type 4 (I9..bI >1) layer

images. However it was emphasised that the probability of loops being located

in a transition zone is small. In Part II experimental evidence for such

transition zone images was presented and it was also demonstrated that a

s imple  test to establish whether or not a particular Image arises from a loop

located within a transition zone Is to examine It with other diffraction

vectors so tha t the dimens ions of the layer struc ture are ef fectivel y

changed. This test should be equally applicable to images from non-edge loops

and thus the occurrence of transition zone images should not unduly complicate

the use of simula ted images for anal ysis of mixed popula tions of edge and

non-edge loops.

The conclusions from the present work on the simulated Images from non-

edge loops are:-

(1) ModifIcations of the edge loop images are predicted on going to

the non-edge configuration , but that In the majority of cases where I.a..~I = 1

or J g.b ) >1 (types 3 and 4) the images retain their basic form wi th some

skewing of the B-W lobes and rotation of the B-W i nterface. The degree of

rotation of the interface can give an estimate of n.

(2) It is emphasised that I9..b I > 1 images ( type 4) always retain their

characteristic interface structure between the black and white lobes.

(3) The 9..b( = 0 images from loops with b normal to z may be distorted

significantly from the syninetrical ‘butterfly’ type 2 images for pure edge

loops.

(4) For some specific combinations of ~~~, b, n and z difficulty is encoun-

tered in distinguishing between modified type 1 and type 2 Images ( 9.bI = 0)

and modified type 3 images corresponding to the conditions 0 < t9..bI~ 1.

(5) The direction of skewing of distorted type 2 images can often be

used to distinguish between different families of n ’s rotated by different
amounts out of the b-z plane.
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(6) ProvIded n and b lie close to the image plane the vector in provides

a good estimate of n. This estimate is very precise when both b and n lie in

the image plane.

Turning to the application of the present results to the analysis of

dislocation loop geometries, an essential requirement is that the image should

be examined using a number of 9.’s. Thus different va lues of (a.bI are

obtained and this should enable an unambiguous determination of b to be made

for all non-edge as well as edge loops. This method is similar in principle

to the so-called tg .bI analysis technique established for analysing disloca-

tion line segments and resolvable loops. Loop normals are estimated from

a combination of the direction of skewing of distorted type 2 images and noting

the behaviour of rn with changing 2 for types 3 and 4 images. If conditions

can be achieved so that b and n lie in the image plane the in vector provides

a very precise estimate of n. The application of these approaches to the

analysis of mixed populations of loops in Irradiated Mo is described in Part

IV.
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Appendix

— Displacement field of a circular finite loot

A set of cartes i an axes x1 Is defined with its origin at the loop centre

so that x3 i s a long n , and x1 and x2 define the loop plane such that x1 Is

along the shear component of b. If the sign convention given in Section 2.2

is employed and the components of b are written In the x,~ system, it can be

seen that b1 ~ 0, b2 = 0 and b3 is positive , negative or zero for the loop

having vacancy, interstitial or pure shear nature respectively. Then the

displaceme nt f ield R in the x 1 system may be written (Bullough and Newman

1960, Ohr 1972)

r - x 1 (f1 + x 1f3 ) - f

r2 
- x 2 (f 1 4 )(1 f3)

r3 = - f 2 - x 1f5

b3 1 owhere a 
4(1—v)pa tk111 - (1—2v)1 1 }

b3~~ i
= 

~~~~ 
k1 1 0 + 2 1—v 10

0

a 

4( l-v)p~e2 {2 1l
0 

- p1o
1}

b1~~ {21l—v ~I ~ - .L~.I J 0)4 4(1— v)~ ‘ ‘ 0 p

b 1
4(1—v )pa ~kII 1 + (l—2v)1 1

0}

a = loo p radi us

Cx~
2 

+ x2~J
1

a

x 3
a

V Po i sson ’s ratio 

~~~~~~~~~~~~ ..... .. . T . ~. .. . T .~~~~~~~~~ .~~~~~~ .... . ~~~~~~~~~~~ .. . .
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an d I~ = 
~~ 

t”Jj ( t)J
~
(p t)exp (_ICIt)dt

The Integrals I~ may be expressed In terms of elliptic integrals as shown by

Eason , Noble and Sneddon (1955).

The quantity required In the electron diffraction equations is a•~ 
d1~ or

-g. _. where z IS anti-pa rallel to the electron beam and 
~ 

lies in the plane
normal to this. Another set of axes X 1 Is flow defined such that the origin Is

at the loop centre an d X 3 Is in the z direction. Then and define the

co-ordinates of the column s and also the plane containing 
~~
. Therefore, if R

has components R,, in the X1 system, the only terms required are R1, R2, or 
-

ax1’ - ~~~ A matrix U is defined so that U~ is the direction cosine between

the axes and x
3
. Then the required components are

= -(X1-U13x3)(f1+x1f3) - U13(f 2+x1f5) - U 1 1f4

dR df1 df df
and ~sc.! = — (Xi

_U
i3x3)(~.ç + U31f3 + x i jp~ ~ 

— U13 { 
.
~~~
.. +

df df
+ x1 ~~~~~~ 

- U33 (f1 + x 1f3 )) - U11 ~~ ( I  1,2)

df 1 b3 ( X3-U33x3) 1where 
~~~~~~ 4(l—V ) a3p3 

{2(l-2v)11 - 2 kIm 1 - pL (1 2v)10 
- kII0

2J)

b U  Ic )
+ — ( —v) 1 — RI!1 I
4(l—v)a pc

df2 -b3(X 3-U33x3) .LcJ {2(1—’v)1 1
1 

+ )~ )I 1
2} — 

b3 U33
3 4(1-v)a p 4(l-v)a

{ (l-2v)10 ’+ Ic 11 2 }

df b ( ) ~— U x )  b U

4(l-v)a~p 
-

~~~ C{4~I~ - 81i° + 
+ 4( l

1
v~~~~ 

{2 1l
0 

- p1
0
1

- 2 )~ II1
1 

+ *II~
2}
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—~~~~

df4 
- 

b1 ( X 3-U33x3) o 1 
- 
2 (l—v) 2 1 b1U33-— 23 1 ~ o 

p +

3 4( l -v)a ~ 4(l v)ap

{k11 1
1 

- 11
0 

- 2p (l-v)10
1 }

df b( U x )  1 2 1
- 1 3 ~3

__
~_ { p( l—2v)I  + - 2(l—2v)I ° - 2 ) c ) I  I

+ 

b1 U33 
2 

Id {2v1 1
1 

- Rh 1
2)

4(l-v)a p

n dR 1 
-

All the I required for may be written In terms of compl ete elliptic

integrals of the first and second kind ; however, to calculate 1o
0 in R1

incomplete elliptic integrals are also required , and the extra time used for

this makes dR1 quicker to compute despite the greater complexity of the

expressions , ~s mentioned in section 2.1.

In the program for pure edge loops described by Bullough , Maher and Perri n

(1971) two simp lifications were made in computing ~~i: firstly, at large

distances from the loop the displacement field of an3lnfinitesima l loop was

used, and secondly, the Im’~ were tabulated for various p and 
~~
, and the

nearest result to the required point used. Because of the time saved in the

Bloch-wave program , neither of these approximations is used ; the finite loop

displacement field is calculated afresh at each point in the integration using

supplied computer library subroutines for the elliptic integrals. The above

expressions may be reduced to those for an infinitesima l loop if required by

making the approximation

= + IC) 2 ~~ (l +p) 2 
+

and using well-known expans ions for the elliptic integrals. Then, for example ,
3 22

~
i ~~a , 1 _ 3pa

2r2

~~25—

Li 
- - - ~~~~~~~~~~~~~~~~~~ . - _ _ - - - . --
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One final point which requires some care in prograimeing Is the behaviour

of the di splacement field as p • 0, which apparently diverges from the above

expressions for f and . It can be shown that this Is not the case by againUS3

expanding the elliptic integrals, this time In the limi t of small p for various

combinations of the I, . For example ,

1o ~1
L~J P o 2 (l+,c12)3/z 

and L~o ’J 
0 

- 

(l+IcI~~~~

but 1211
0 
Ij 3(4 1c1 2-1

[j )  
- 

~)j  p~O 8(l4kI2)7T~

Rather than separately compute such expressions as p • 0, it is easier in

practice to avoid such problems by moving the grid of columns slightly to
minim ise the number that intersect the loop normal , and to set p equal to some
small val ue c for all p < c. 
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TABLE 1

Contrast parameters (100 kV electrons)

______________ 1

232 =

~200 
= 329 

~20O = ~200
/’0.08

~2l l  = 411 
~21l 

= 
~2ll/0.1

~Howie & Bansinski (1968).

& Hirsch (1968).
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TABLE 2

Values of npduj i of ~.b foi perfect andfaul ted loops at .z = [0flJ and L = [00l~ in 8CC Crystals

(a) z = ibllJ

9. Con] C21~iJ f200] C21 1J

~~[oiiJ i o

~~Coiij 0 Q 0 0

~ L~noJ 1

~~CliOJ 11 1

~ DolJ 1

~~~iliJ 1 0 1 2 t~.

~~[~ii lJ  0 1 1 1

a [l06( 0 2 2 2

a [Oloj 1 1 0 1

(b) z=L p oi j

9. )51oJ Co2oJ 1:110] ).~ooJ
~~~~~~

~~DolJ 0 1

~~DioJ 0 1 1 1

~~t3 l lJ 1 0

a Colo] 1 2 1 0
a CoOlJ 0 0 0 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
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TABLE 3

Image Classification for Edge Loops within the Layer Structure ~~~ 0)

Image Type Diffracting Conditions Predicted Image

= 0 and ~ (z n) ~ 45° InvIsible or weak black/white
lobes

2 9..b = 0 and ~ (z~~) “.‘90~ butterfly’ contrast
3 0 

~~~~~~ ~ Simple black/white lobes

4 Ia.bI > 1 Black/white lobes with
interfaced structure 



______________________________  ______  -

TABLE 4a
Figures showi ng Case (I) Images from Edge Loops

____________ _________ 

Figures

Figure No 2 4 5A 6
O Column ~~~ 

‘
~c c ~~~

Image vii I vii i vi i ii

~ <L~~l~ 
1 

Figure No 
a~~~~~~

2
~~~~~~d a’~~~d a~~~~~~~~

’
~~~~~~d

Image i i v i i vii i i i i  ii vii ii vii ii

Figure No 2 4 6
> 1 Column ci ~~~~~~~~~~

Image vi i vii vii vii vii

TABLE 4b
Figures showing Case (Ij Images from Non-Edge Loops

Figures

Figure No 2 6
O Column a a

Image ii i V iv vi

Figure No 2 6
0 < h9..kI ‘< 1 Column ~~~~~~~ 

~~ c b” ~~~~
Image iii v iii V iV Vi iV vi

Figure No 2 6
> 1 Column d

Image iii V iV vi
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